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Abstract—An improved mixing length theory of turbulent heat and mass transfer is developed which
applies more realistically when the velocity gradient, or the temperature gradient, or both, are small.
The theory is applied to turbulent flow between parallel plates which are maintained at constant but
different temperatures, and the results compare favorably with experimental data.
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NOMENCLATURE
constant = 5-4/k;
constant = 5-5;
ciC3;
defined in equation (7);
velocity correlation coefficient;
temperature correlation coefficient,
equation (8);
C1€C3;
specific heat of the fluid;
dimensionless temperature gradient
atyt =0;
thermal conductivity of the fluid;
constant = 0-4;
mixing length;
lu*/v;
\/ ("
c,#/K, Prandtl number;
£y/¢g, turbulent Prandtl number;
4y,.u,/v, Reynolds number;
time average temperature;
fluctuating component of tempera-
ture;
temperature of the lower and upper
walls, see Fig. 1;
temperature at the centerline;
inlet temperature, see Fig. 1;
’I; - Tw’
time average axial velocity;

Yms

w

fluctuating component of the velo-
city;

area average velocity;

J/(z./p), friction velocity;

it fu*;

fluctuating component of the velo-
city in the y direction;

transverse coordinate measured
from the wall, see Fig. 1;

yurfv;

half the distance between the two
plates, see Fig. 1;

Ymit*/v;

eddy diffusion coefficient for mo-
mentum transport;

eddy diffusion coefficient for heat
transport;

(T - Twl)/(Tz' - Tw,);

(Twz - Twl)/(T: - Twl);

molecular viscosity of the fluid;
u/p, kinematic viscosity of the fluid;
density of the fluid;

shear stress at the wall.

RECENTLY it was shown [1, 2] how Prandtl’s
mixing length theory for momentum transport
can be extended in a simple manner, so that it is
applicable in regions where the velocity gradient
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is very small as it is in the central core of fully
developed turbulent tube flow. According to this
more general phenomenological theory, which
was shown to include Prandtl’s momentum
transport and von Karman’s similarity hypo-
theses as special cases, the Reynolds stress can
be written as
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|AT| =T + ) - TO)|
N IaT + P o*T 3
Tlay 2820 )
In equations (2) and (3) the temperatureT\(y)
is expanded in a Taylor series in the positive

o du™\? dut B d%u* .

Cwr | o\t Tyt T 2dy? (1a)
w2 e fd2t\2 (B dut du*

o) Bael= e "

Equation (1a) is the result obtained by Prandt]
whereas equation (1b) is a new result which is
to be used in the region where the velocity
gradient is very small. Our purpose here is to
improve the mixing length theory of turbulent
heat and mass transport processes in a similar
manner so that it is applicable equally well in
regions where velocity, temperature or concen-
tration gradients are both large and small.

In this discussion we will concentrate our
attention on heat transfer only since appropriate
data are available for comparison with the
theory. Equations for mass transfer can be
obtained in exactly the same fashion except
when mass transfer rates are high enough for
transverseconvection to become important [ 3,4].

Mixing length theory assumes that the fluid
lumps retain their identity over a certain dis-
tance and then mix with the surroundings. Thus,
when a mass of fluid traverses a distance { in
the positive or negative y direction, the corres-
ponding change in temperature is given by

IAT| = |T() - T - D)
fus ot
dy 287

~

@

or

and negative directions, retaining terms con-
taining second order derivatives.

Let us now assume that the time-average of
the absolute value of the fluctuation caused by
the temperature differences AT, and AT, can be
written as,

i
IT] = 3(AT,| + [AT:)
AT BTy, T, o
"2l ey 28y dy 2 0y*

“)

or in terms of dimensionless quantities we have

|

[T]_1[], @ _& o0
AT 2f|eyt 20y*
06 I o°0
e da o

By following a similar procedure, for the velocity
fluctuation one obtains [1, 2],

W] 1 pdut Bdut

ut* 2| tdyt  2dy*t?
dut | 1d%*
PR e




AN IMPROVED MIXING LENGTH THEORY

We assume with Prandtl that the transverse
component ¢’ is proportional to /, so that

(7

Also, the temperature—velocity correlation co-
efficient ¢, is defined as

Wwam

T

C3 =

—. ®
[7fv]
By combining equations {5}-{8) we get
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in the Taylor series expansion, equations (2) and
(3). Thus, equations (12b, c, d) will be useful in
regions where the velocity and/or temperature
gradient is small as, for example, in the following
four cases:

(a) Fully developed turbulent flow between
parallel plates with constant heat flux at the
walls.

In a region near the wall both the velocity
and the temperature gradients are large and
therefore, equation (12a) will apply, whereas

TV ¢ ] du* ~.§ d?u* in the central region, because of symmetry,
ATw* — 4| | dyt 2dy*? these gradients are small and consequently,
dut P d%ut 0 B & equation (12d) applies.
+ iii d—u; + E‘a——%j[ Uli P «é——a—% (b} Fully developed turbulent flow between
Y Y y Y parallel plates with walls maintained at constant
a0 1 o0 but different temperatures.
+ ll'@“},“? + 2ay*? ©) Equation (12a) applies in a region near the
where wall. In the central portion, the velocity gradient
is small because of symmetry, and the tempera-
Cy = €;C3. (10) ture gradient is still significant so that equation
Since
la|  lal = 1b]
1
fla =l +la b0 = (1
1ol . 6] =a]
Equation (9) reduces to
[ du*i| 26 du* B d*u*
Ble—|l==1 ;5 |2 |3
HdyF| oy | Yyt T |2yt ?z | |& o I (122
e pgldtuti| 00| Eent] | ) (11077207 (12b)
Tv )2 HayTEleyT C 12ayTF T eyt
ATu* .c.fil3 g‘.‘:. .__.529 . I} d_ui = g.mdqur z2 32 8 {12(:)
2 1 dy+ 8)’+2 * ldy+ = 2dy+2 _%5’% Blig a~9+_}
Cap T T S 1 du® Y Y (12d)
L 1 dy+2 ay+2 ’ 2 dy” = 141 d}’+‘
Equation (12a) is the familar result obtained  (12b) applies.

by the usual extension of Prandtl’s momentum
transfer mixing length theory to heat transfer
problems [3]. Equations (12b, c, d), on the other
hand, arise because of the inclusion of the second
order derivatives of velocity and temperature

(c) Couette flow between two parallel walls
displaced relative to each other with two walls
maintained at the same constant temperature,

In this case equation (12a) again applies near
the walls. Near the central region, the velocity
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gradient is significant but the temperature
gradient is small, because of symmetry, and
therefore equation (12¢) will apply.

(d) Turbulent heat and mass transfer across
a liquid film.

In this case a variety of possibilities exist
depending on whether or not there is shear at
the free surface. In the simplest case of no shear
at the gas-liquid interface, equation (12a)
applies near the wall and equation (12b) near
the free surface if there is heat or mass flux at
the wall. If the wall is adiabatic or impervious
to mass transfer, then equation (12c) rather than
(12a) applies near the wall.

It should be emphasized that the mixing length
theory is inadequate to give clear physical
insight into the structure of turbulent flow
because no attempt is made to explain how and
why a fluid lump retains its identity and the
mechanism by which it adopts the properties
of the surrounding. Nevertheless, it is believed
that equation (12) is a useful extension for the
purpose of making heat transfer calculations.
To illustrate this point consider the case (b),
mentioned above, of asymmetric heat transfer
between parallel plates. This is a physical situa-
tion for which the mathematical formulation is
particularly simple, Prandtl’s theory is clearly
inadequate and experimental data are available
to compare with the theory.

By assuming constant physical properties,
the fully developed temperature profile at
large distances downstream from the start of
the heat transfer section can be obtained from
(see Fig. 1)

d 1 d0 Tv
ajLra Tv | 1
dy”* [PrdyJr ATu*:l 0 13
0(0) = 0 (14)
02y) = 0,. (15)

Now for — T'v' we will substitute appropriate
expressions from equation (12). Since equation
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FI1G. 1. Schematic diagram of parallel plate duct with unequal
wall temperatures.

(12) contains velocity gradients, it is necessary
to solve first the momentum equations. This
has been done [1, 2] by dividing the region
between wall and centerline into four regions.
The momentum eddy diffusivity obtained for
each region and the assumptions made for each
region to solve the heat transfer problem are
given below

(1) The laminar sublayer: 0 < y* < 5.

In this region

1 df > T
i N
Prdy* ATu*

(2) The buffer layer: 5 < y™ < 30.

Let us express — Tv in terms of the eddy
diffusivity ¢,

TV eg d0 1 gy dO
ATu* ~ vdy*  Pr,v dy*

where eddy diffusivity for momentum transfer
&), 1s defined as

v ey dut

u*? " v dy*t’
In general, Pr, is a function of y* but it appa-

rently does not play a very important role when
the Prandtl number is close to unity or higher.
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Thus, for present purposes we will assume that
Pr,=1,

_ .._ﬂ.' M‘Q’Mﬂ_ 'Y:—l _(ﬁ

— v dy+ - dy+ .

(3) The inner layer: 30 < y* < 04 y,.

In this region heat transferred by molecular
conduction can be neglected compared to the
transport by eddies. Consequently,

Ty _ 1 df
ATu* = Prdy*

Since both the velocity and the temperature

gradients are large, equation (12a) applies

_ T Y[ do
ATw* — ""1\dy* J\dyt )
By assuming that Pr, = 1, we have [1, 2]

by _  pfdu” ky* Yy
v—cﬂll(dy)— )

+
(4) The outer layer: 04y} < y* < yu
Again,
Lo
-3
ATu*

1 do

Prdy*’

In this region the velocity gradient is small but
the temperature gradient is significant compared

to the corresponding second derivatives so that
equation (12b) applies:

__Tz’v c,,3d"'+d9 _ ey dO
ATw* ~ 2 H|dy 3 dyt v dyt
and[1,2]
e Ym _ kym
v A 54

Division of the duct into the four regions
employed here will give useful results only for
moderate Prandtl numbers (Pr =~ 0-5-20). At
very high Prandtl numbers the concept of a
“laminar” sublayer does not apply. Since eddies
do penetrate this region the contribution to
heat transfer by turbulent motion cannot be
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neglected when Pr > 1, as can be seen from
equation (13). That is, when molecular diffusion
is very slow, even small amounts of eddy
diffusion contribute significantly to the trans-
port process. On the other hand when Pr < |,
molecular conduction in the radial direction
[see equation (13)] cannot be neglected in the
central portion of the duct, as we have done here.
Thus, for moderate Prandtl numbers one
can divide the duct into four regions and with
the above assumptions equation (13) can be
solved to obtain the temperature profile [2]

0=6G.y", 0<y"<5 (16)
5G y*
_E{Pr + ln[l + Pr(~5- — 1):}},
5yt <30 (17)
G1

= ——{Pr +In(l + 5P} + —
1 - J[1—
{‘ Ie Vi

- y*/y ]

Prk

Oy 1+ - (30/ym)]]
Oyl 1 = 1 = (30/y)]

2
R

— (30/ym))’

<yt <04y (18)

=—{Pr+ln(1 + 5P} + o G 1

{m [1 - 61+ J[1~ ]
1+ /061 — J/[1 - (30/ym)] \/(0 6)

G 54
- ) 19
04y < y" < yn

where G is the gradient at the wall and it is
obtained by employing the relation 6(y,;) = 6,,/2.
This gives

Pré,

1
5 ¢ = SLPr +1In(l + SPr] +

(30/y,. )]

_ ___3____}
JIT = G073,;)]

§ {m[ = JO6) 1 + /1 = (30/y,)]
1+ /(06)1 — J[1 — (30/y;)]
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F1G. 2. Comparison of theoretical fully developed temperature profile with
experimental data. (The dashed curve is taken from Blanco [8]. The eddy
diffusivity expression proposed by Siegel ez al. [7] was used to obtain this

curve.)
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F1c. 3. Comparison of theoretical fully developed temperature profile with
experimental data.
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L2 2
JO6) 1 - (30/y,)]

+ 3-24}. (20)

In equation (19) k is the constant which is
determined from the velocity profile measure-
ments. If k = 04 and B = 55, the relationship
between the Reynolds number and y}, can be
obtained by integrating the velocity profile
[2] and this gives

(Re/4) = 2:5y5 In(1:35y%) + 29y, — 64'5.
(21)

Thus, the temperature profile is completely
determined when the parameters Pr, Re and
8,, are specified.

Temperature profiles obtained from these
equations are shown in Figs. 2 and 3. The results
are compared with the experimental data of
Sage et al. [5, 6] and the agreement is quite
satisfactory, particularly in the central portion,

It is in this region that we have used the modified
form of the mixing length theory, equation (12b).
The original form of Prandtl’s mixing length
theory gave the dashed temperature profile
[7, 8] which obviously does not agree with the
experimental data. Therefore, it appears that
the modification of the mixing length theory
proposed here is useful and is consistent with
experimental observations. Some error may
have been introduced by neglecting dissipation
and expansion work, especially for the run 199
in Fig. 2 [9].

Let us now examine the essential difference
between the present theory and previous work.
This difference arises mainly because different
mixing length expressions have been employed
in the central portion of the channel.

In the central portion the contribution to
heat transfer by turbulence is much greater
than that due to molecular motion. Therefore,
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equation (13) after integration can be written as

TV 1 /de y*
ATu* Pr (dy*)y», -0 0 e

If one employs Prandtl’s mixing length theory to
obtain —T,v/, i.e. equation (12a), the result is

Tv _ p(dut(dO) 1(do
T P\dy*)\dyt)  Pr\dy*/),«-o

T ATu*
do) _ 1(do ! ]
dy*)  Pr\dy*/,,-o| l(du*/dy*)

where I, = I;,/(cg). Since the velocity gradient is
zero at the centreline, if we take I, to be finite,
the above equation predicts that the tempera-
ture gradient at the centerline is infinity (see

Fig. 2),
dy Yyt =y max ’

This is obviously contrary to experimental
observations as can be seen clearly from the
figures. In some of the problems studied, such
as momentum and heat transfer in a tube,
because of symmetry, the velocity and tempera-
ture gradients at the center are zero. However,
Prandtl’s mixing length theory cannot account
for both a finite eddy diffusivity and zero gradi-
ents simultaneously without being modified
arbitrarily to do so and therefore it is considered
to be inconsistent in the central portion of the
tube. Nevertheless, the velocity and temperature
at the centerline, predicted from the mixing
length theory, are found to be in reasonable
agreement with the experimental values. Thus,
the Prandtl and von Karman analogies give
fairly satisfactory results for 0-5 < Pr < 20.
In other problems involving asymmetric con-
dition, similar to the one we have considered
here, in the past mixing length theory has been
modified in some arbitrary but simple way to
overcome the difficulty of an infinite gradient
at the center. For example, mixing length

or
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theory is found to give satisfactory results when
the eddy diffusivity curve is arbitrarily flattened
from the point of its maximum to the centerline
[8, 9]. Such a condition is also important when
one is concerned with interphase transfer in
multiphase cocurrent or countercurrent flow
[10]. The improved mixing length theory pro-
posed here, essentially does the same thing but
in a more systematic way on the basis of our
observations and knowledge of turbulence.
No arbitrary modifications are necessary and,
in particular, it answers clearly two main
questions: (1) Why is Prandtl’s mixing length
theory not applicable in the central core of
turbulent flow in conduits? and (2) What is a
simple systematic way to overcome this diffi-
culty? The reformulation of Prandtl’s mixing
length theory, which includes the (d%i/dy?) and
(d26/dy*?) terms in equations (5) and (6), gives
answers to both of these questions.
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UNE THEORIE AMELIOREE DE LA LONGUEUR DE MELANGE POUR LE TRANSFERT
THERMIQUE ET MASSIQUE TURBULENT

Résumé—On développe une théorie améliorée de la longueur de mélange pour le transfert thermique et

massique laquelle s’applique avec plus de pertinence lorsque le gradient de vitesse ou le gradient de

température ou encore les deux 4 la fois sont faibles. La théorie est appliquée & I’écoulement turbulent

entre deux plans paralléles maintenus a des températures constantes et différentes. Les résultats sont
comparés favorablement avec les résultats expérimentaux.

EINE VERBESSERTE MISCHLANGENTHEORIE

Zusammenfassung—Eine verbesserte Mischldngentheorie fiir den turbulenten Warme- und Stoffibergang

wurde entwickelt. Sie gewihrleistet realistischere Anwendbarkeit, wenn der Geschwindigkeitsgradient

oder Temperaturgradient oder beide klein sind. Die Theorie wird auf turbulente Strémung zwischen’

parallelen Platten konstanter, aber ungleicher Temperatur angewandt, und die Ergebnisse lassen sich gut
mit Versuchswerten vergleichen,

YCOBEPUIEHCTBOBAHHAA TEOPHA IIYVTN CMEIIEHUA OJA
TYPBYJIEHTHOTO TEIIJI0O-U MACCOOBMEHA

Anvoragua—Paspalorana yCOBEepIIEHCTBOBAHHAA TeOPMA NYTH CMEMIEHUA JJIA Terjo-u
macconeperoca, Haubojee HANEMHAA NPH MAJNHIX IPAMEHTAX CHKODOCTH M TeMOEPATypHI.
OTa TeOpDUA TPUMEHPHA K TYPOYNEHTHOMY TeUeHMI0 MEMKAY NapaJeNbHBIMHM NJIACTHHAMY,
KOTODhi€ TIORAEPIHMBAIOTCA NpPH TIOCTOAHHBIX,

CPaBHEHWMA ¢ DHCNEPUMEHTAJIbHEIMY HAHHBMH ABJIAIOTCA YIOBIETBOPHTEIBHBIMHE .

HO pAasHHX Temneparypax. Pesyaptarts



