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Abstract-An improved mixing length theory of turbulent heat and mass transfer is developed which 
applies more realistically when the velocity gradient, or the temperature gradient, or both, are small. 
The theory is applied to turbulent flow between parallel plates which are maintained at constant but 

different temperatures, and the results compare favorably with experimental dam. 

NOMENCLATURE 

constant = 54/k; 

constant = 5.5; 

c,c,; 

defined in equation (7); 
velocity correlation coefficient; 
temperature correlation coefficient, 
equation (8); 

c1c3; 

specific heat of the fluid; 
dimensionless temperature gradient 
at y+ = 0; 
thermal conductivity of the fluid; 
constant = 0.4; 
mixing length; 

~;~~il, ; 
c&K, Prandtl number; 
eM/eH, turbulent Prandtl number; 
4ymub/v, Reynolds number; 
time average temperature; 
fluctuating component of tempera- 
ture; 
temperature of the lower and upper 
walls, see Fig. 1; 
temperature at the centerline; 
inlet temperature, see Fig. 1; 
T - T,; 

time average axial velocity; 

I 

U, 

ub, 
u*, 
u+, 
V’, 

Y+, 
Y nl) 

Y+ rn, 

&MM, 

fluctuating component of the velo- 
city; 
area average velocity; 
J(z,/p), friction velocity; 
ii/u*; 
fluctuating component of the velo- 
city in the y direction; 
transverse coordinate measured 
from the wall, see Fig. 1; 

yu*/v; 

half the distance between the two 
plates, see Fig. 1; 

Y&*/v; 

eddy diffusion coefficient for mo- 
mentum transport; 
eddy diffusion coefficient for heat 
transport; 

(T - TJK - LJ; 
6% - T,,Wi - T,,); 
molecular viscosity of the fluid; 
p/p, kinematic viscosity of the fluid; 
density of the fluid; 
shear stress at the wall. 

RECENTLY it was shown [l, 21 how Prandtl’s 
mixing length theory for momentum transport 
can be extended in a simple manner, so that it is 

applicable in regions where the velocity gradient 
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is very small as it is in the central core of fully 
developed turbulent tube flow. According to this 

1 AT, 1 = 1 T(y + r) - T(J) 1 

more general phenomenologi~~ theory> which ali i2,T 
z f-+--. 

was shown to include Prandtl’s momentum I 4Y 2 i?Y2 (3) 

transport and von Karman’s similarity hypo- 
theses as special cases, the Reynolds stress can In equations (2) and (3) the temperatureT(Y) 
be written as is expanded in a Taylor series in the positive 

Equation (la) is the result obtained by Prandtl 
whereas equation (lb) is a new result which is 
to be used in the region where the velocity 
gradient is very small. Our purpose here is to 
improve the mixing length theory of turbulent 
heat and mass transport processes in a similar 
manner so that it is applicable equally well in 
regions where velocity, tem~rature or concen- 
tration gradients are both large and small. 

In this discussion we will concentrate our 
attention on heat transfer only since appropriate 
data are available for comparison with the 
theory. Equations for mass transfer can be 
obtained in exactly the same fashion except 
when mass transfer rates are high enough for 
tr~sverseconvection to becom~important [3,4]. 

Mixing length theory assumes that the fluid 
lumps retain their identity over a certain dis- 
tance and then mix with the surroundings. Thus, 
when a mass of fluid traverses a distance 1 in 
the positive or negative y direction, the corres- 
ponding change in temperature is given by 

IA&] = 1%~) - TOI - 01 

aT’ i2azii 
= fay-2dy2 (2) 

or 

and negative directions, retaining terms con- 
taining second order derivatives. 

Let us now assume that the time-average of 
the absolute value of the ffu~tuation caused by 
the temperature differences AT, and AT, can be 
written as, 

n- i2a2Tr ~_+__.....-. 
aY 2 ay2 II (4) 

or in terms of dimensionless quantities we have 

By following a similar procedure, for the velocity 
fluctuation one obtains [ 1,2], 

I4 1 -=- I dlc+ gd2u+ 

u* 2 l dy+ 2dyf2 
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We assume with Prandtl that 
component u is pro~~ional to 

m=Qfl. 

Also, the temperature-velocity 
effkient c1 is defined as 

the transverse 
u’, so that 

correlation co- 

By combining equations (S)-(S) we get 

(8) 

m c, --=- 
AT@* 4 [I 

f du+ ‘$d2u+ 

1 dy+ - 2dy+* -I 

I3 [I I ae i: a23 -- %y+ ‘zp I 
de I: a”8 

-I- I~~$.-----q ay 2 ay II (9) 

in the Taylor series expansion, equations (2) and 
(3). Thus, equations (12b, c, d) will be useful in 
regions where the velocity and/or temperature 
gradient is small as, for example, in the following 
four cases : 

(a) Fully developed turbulent flow between 
parallel plates with constant heat flux at the 
walls. 

In a region near the wall both the velocity 
and the temperature gradients are large and 
therefore, equation (12a) will apply, whereas 
in the central region, because of symmet~, 
these gradients are small and consequently, 
equation (12d) applies. 

(b) Fully developed turbulent flow between 
parallel plates with walls maintained at constant 
but different temperatures. 

Equation (12a) applies in a region near the 
wall. In the central portion, the velocity gradient 
is small because of symmetry, and the tempera- 
ture gradient is still si~i~~ant so that equation 

since 

Equation (9) reduces to 

t TU --= 
ATu* 

9 
,du+> 
‘dy+ ’ 

-I * t; d*u+ f I l Ydy+2 

l2 d2u+ I I -~ 
; dy’2 

Equation (12a) is the familar result obtained (12b) applies” 
by the usual extension of Prandtl’s momentum (c) Couette flow between two parallel walls 
transfer mixing length theory to heat transfer displaced relative to each other with two walls 
problems [3]. Equations (12b, c, d), on the other maintained at the same constant temperature. 
hand, arise because of the inclusion of the second In this case equation (12a) again applies near 
order derivatives of velocity and tem~rature the walls. Near the central region, the velocity 
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gradient is signiticant but the temperature 
gradient is small, because of symmetry, and 
therefore equation (12~) will apply. 

(d) Turbulent heat and mass transfer across 
a liquid film. 

In this case a variety of possibilities exist 
depending on whether or not there is shear at 
the free surface. In the simplest case of no shear 
at the gas-liquid interface, equation (12a) 
applies near the wall and equation (12b) near 
the free surface if there is heat or mass flux at 
the wall. If the wall is adiabatic or impervious 
to mass transfer, then equation (12~) rather than 
(12a) applies near the wall. 

It should be emphasized that the mixing length 
theory is inadequate to give clear physical 
insight into the structure of turbulent flow 
because no attempt is made to explain how and 
why a fluid lump retains its identity and the 
mechanism by which it adopts the properties 
of the surrounding. Nevertheless, it is believed 
that equation (12) is a useful extension for the 
purpose of making heat transfer calculations. 
To illustrate this point consider the case (b), 
mentioned above, of asymmetric heat transfer 
between parallel plates. This is a physical situa- 
tion for which the mathematical formulation is 
particularly simple, Prandtl’s theory is clearly 
inadequate and experimental data are available 
to compare with the theory. 

By assuming constant physical properties, 
the fully developed temperature profile at 
large distances downstream from the start of 
the heat transfer section can be obtained from 
(see Fig. 1) 

1 - -0 (13) 

e(o) = 0 (14) 

8(2y,+) = 8,. (15) 

Now for - T’u’ we will substitute appropriate 
expressions from equation (12). Since equation 

FIG. 

x=0 
Fully developedTvelocity profile 

gI$g-lqCJz 

X r, 

Asymptotic temperoturd profile 

Tz 
T, +T rrz I 

2 

1. Schematic diagram of parallel plate duct with unequal 
wall temperatures. 

(12) contains velocity gradients, it is necessary 
to solve first the momentum equations. This 
has been done [l, 23 by dividing the region 
between wall and centerline into four regions. 
The momentum eddy diffusivity obtained for 
each region and the assumptions made for each 
region to solve the heat transfer problem are 
given below 

(1) The laminar sublayer: 0 < y+ d 5. 
In this region 

1 d6’ T’v’ -- 
Pr dy+ 

B-- 
ATu* . 

(2) The buffer layer: 5 < y+ < 30. 

7. Let us express - To m terms of the eddy 
diffusivity Q, , 

I TV E,, d0 1 E,,, d8 --= =--- 
ATu* v dy+ Pr, v dy+ 

where eddy diffusivity for momentum transfer 
.sM, is defined as 

lllvl EM du+ -_-- 
u*2 v dy+’ 

In general, Pr, is a function of y+ but it appa- 
rently does not play a very important role when 
the Prandtl number is close to unity or higher. 
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Thus, for present purposes we will assume that 
Pr, = 1, 

T’v’ Q de 
-aF=--f= v dy 

(3) The inner layer: 30 < y+ < @4 y,‘. 

In this region heat transferred by molecular 
conduction can be neglected compared to the 
transport by eddies. Consequently, 

Tld 1 d8 -- 
ATu* 

g-- 
Pr dy+ ’ 

Since. both the velocity and the temperature 

neglected when Pr % 1, as can be seen from 
equation (13). That is, when molecular diffusion 
is very slow, even small amounts of eddy 
diffusion contribute signi~cantly to the trans- 
port process. On the other hand when Pr < 1, 
molecular conduction in the radial direction 
[see equation (13)] cannot be neglected in the 
central portion of the duct, as we have done here. 

Thus, for moderate Prandtl numbers one 
can divide the duct into four regions and with 
the above assumptions equation (13) can be 
solved to obtain the temperature profile [2] 

e = G.yf, o<yy+<5 (16) 

gradients are large, equation (12a) applies 
B=$Pr+ln[l +Pr~~-~)I}, 

5 <y+ 6 30 (17) 

By assuming that Pr, = 1, we have [l, 2] 

(4) The outer layer: 0.4 y,’ < y ’ < y,‘. 
Again, 

T;V’ 1 d0 -- 
ATa’ 

$ -7. 
Pr dy 

In this region the velocity gradient is small but 
the temperature gradient is significant compared 
to the corresponding second derivatives so that 
equation (12b) applies: 

and Cl, 21 

%f Y,’ kY,+ -=-=_ 
V A 54 . 

Division of the duct into the four regions 
employed here will give useful results only for 
moderate Prandtl numbers (Pr N @5-20). At 
very high Prandtl numbers the concept of a 
“laminar” sublayer does not apply. Since eddies 
do penetrate this region the contribution to 
heat transfer by turbulent motion cannot be 

@=g(Pr+ln(l+5Pr)) +gk 

1 - JCl - (Yf/Y,+)l 1 +J[1 - (3O/Y,+)l 

1 f JCl - (Y+/Y,+)ll - J[l - (30/Y:)] 1 
+ x/Cl -“Y’h’ll - JP -:30iy:u. 

3o<y+ <0*4y; (18) 

0=~{Pr+ln(l+5Pr)j+~~ 

i[ 

ln 1 - x/(0*6) 1 + x,/t-l - (30/‘~,+)1 2 
1 + ~‘(0.6) 1 - +‘[l - (3O/y;)l 1 + J(O.6) 

- JU - bO/YZ)] 
}+$~(&o-4) (19) 

where G is the gradient at the wall and it is 
obtained by employing the relation @(y,‘) = 6,/Z. 
This gives 

Pr 8, 
T E = 5[Pr + ln(1 + SPr)] + i 

1 - ,/‘(@6) 1 + J[l - (30/y,+)] 
1 + J(O.6) 1 - &I - (~O/Y,+)] 
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FIG. 2. Comparison of theoretical fully developed temperature profile with 
experimental data. (The dashed curve is taken from Blanc0 [8]. The eddy 
diffusivity expression proposed by Siegel et al. [7] was used to obtain this 

curve.) 
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FIG. 3. Comparison of theoretical fully developed temperature profile with 
experimental data. 
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+ $6) - J[1-:3O,Y;), + 3.24 I * (20) 

In equation (19) k is the constant which is 
determined from the velocity profile measure- 
ments. If k = 0.4 and B = 5.5, the relationship 
between the Reynolds number and YL can be 
obtained by integrating the velocity profile 
[2] and this gives 

@e/4) = 25 y,’ In (1.35 y,‘) + 2.9 y,’ - 64.5. 

(21) 

Thus, the temperature profile is completely 
determined when the parameters Pr, Re and 
t3, are specified. 

Temperature profiles obtained from these 
equations are shown in Figs. 2 and 3. The results 
are compared with the experimental data of 
Sage et al. [5, 63 and the agreement is quite 
satisfactory, particularly in the central portion, 

0.4 < c c 1.6. 
Y,’ ’ 

It is in this region that we have used the modified 
form of the mixing length theory, equation (12b). 
The original form of Prandtl’s mixing length 
theory gave the dashed temperature prolile 
[7, 81 which obviously does not agree with the 
experimental data. Therefore, it appears that 
the modification of the mixing length theory 
proposed here is useful and is consistent with 
experimental observations. Some error may 
have been introduced by neglecting dissipation 
and expansion work, especially for the run 199 
in Fig.2 [9]. 

Let us now examine the essential difference 
between the present theory and previous work. 
This difference arises mainly because different 
mixing length expressions have been employed 
in the central portion of the channel. 

In the central portion the contribution to 
heat transfer by turbulence is much greater 
than that due to molecular motion. Therefore, 

equation (13) after integration can be written as 

y+ =,,’ 
0.4 <y+ < 1.6. 

Y: ’ 

If one employs Prandtl’s mixing length theory to 

obtain -T;d, i.e. equation (12a), the result is 

Or (3) = ;($),+;,[@du’$dy+)j 

where I, = Ii&,.&. Since the velocity gradient is 
zero at the centreline, if we take I, to be finite, 
the above equation predicts that the tempera- 
ture gradient at the centerline is infinity (see 
Fig. 2), 

d6 

C-J dY+ 
= co. 

y+ =y+mex 

This is obviously contrary to experimental 
observations as can be seen clearly from the 
figures. In some of the problems studied, such 
as momentum and heat transfer in a tube, 
because of symmetry, the velocity and tempera- 
ture gradients at the center are zero. However, 
Prandtl’s mixing length theory cannot account 
for both a finite eddy diffusivity and zero gradi- 
ents simultaneously without being modified 
arbitrarily to do so and therefore it is considered 
to be inconsistent in the central portion of the 
tube. Nevertheless, the velocity and temperature 
at the centerline, predicted from the mixing 
length theory, are found to be in reasonable 
agreement with the experimental values. Thus, 
the Prandtl and von Karman analogies give 
fairly satisfactory results for 0.5 < Pr < 20. 
In other problems involving asymmetric con- 
dition, similar to the one we have considered 
here, in the past mixing length theory has been 
modified in some arbitrary but simple way to 
overcome the difficulty of an infinite gradient 
at the center. For example, mixing length 
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theory is found to give satisfactory results when 
the eddy diffusivity curve is arbitrarily flattened 
from the point of its maximum to the centerline 
[S, 93. Such a condition is also important when 
one is concerned with interphase transfer in 
multiphase cocurrent or countercurrent flow 
[lo]. The improved mixing length theory pro- 
posed here, essentially does the same thing but 
in a more systematic way on the basis of our 
observations and knowledge of turbulence. 
No arbitrary modi~~tions are necessary and, 
in particular, it answers clearly two main 
questions: (1) Why is Prandtl’s mixing length 
theory not applicable in the central core of 
turbulent flow in conduits? and (2) What is a 
simple systematic way to overcome this difft- 
culty? The reformulation of Prandtl’s mixing 
length theory, which includes the (d2U/dy2) and 
(d20/dy’2) terms in equations (5) and (6), gives 
answers to both of these questions. 
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UNE THEORIE AMELIOREE DE LA LONGUEUR DE MeLANGE POUR LE TRANSFERT 
THERMIQUE ET MASSlQUE TURBULENT 

R&m&On dtveloppe une thtorie amtliorte de la longueur de melange pour le transfert thermique et 
massique laquelle s’applique avec plus de pertinence lorsque le gradient de vitesse ou le gradient de 
temperature ou encore les deux a la fois sont faibles. La theorie est appliquee a l’ecoulement turbulent 
entre deux plans paralltles maintenus a des temperatures constantes et differentes. Les resultats sont 

compares favorablement avec les r&hats exptrimentaux. 

EINE VERBESSERTE MISCH~NGENTHEORIE 

Zu~mmenfass~~ine verbesserte Mischl~ngenth~rie fiir den turbulenten Wkme- und Stoff~bergan~ 
wurde entwickelt. Sie gewlhrleistet realistischere Anwendbarkeit, wenn der Geschwindigkeitsgradient 
oder Temperaturgradient oder beide klein sind. Die Theorie wird auf turbulente Stromung zwischer’ 
parallelen Platten konstanter, aber ungleicher Temperatur angewandt, und die Ergebnisse lassen sich gut 

mit Versuchswerten vergleichen. 

YCOBEPLIIEHCTBOBAHHAR TEOPWl HYTki CMELUEHMH &WI 
TYPBYJIEHTHOI’O TEHJIO-M MACCOOBMEHA 

AHaoTaqm-Paapa6oTawa yCOBcpmeHCTBOBaHHaH TeOpHR nyTH CMemcHHR AJtH TenJIO-H 
MacconepeHoca, wacr6onee tiagifmiafl nprr Ma.nbIx rpagllemax CK~P~CTE~ II TebfnepaTypbI. 
3Ta TeOpHH npHMeHoH3 K Typ6y~eHTHOMy ToYeHMM ;MeZK@’ ~apa~~e~bH~~~ lIJIaCTAHaMH, 

KOTOpbm nOAaep~~Ba~T~~ tip&l IlOCTORHHbtX, HO paaablx TeunepaTypax. Fe3yXbTaTbl 
CpaBHcHHn C 3~Cnep~MeHTanbH~M~ ~aHH~~~ JiBJIF1FOTCR ~~OB~eTBOp~Te~bH~~~. 


